# Introduction

This guide describes how to install the PacketBlaster card in any computer with an IBM PC AT-compatible (ISA) bus and an available 16-bit expansion slot.

The PacketBlaster allows stand-alone PCs or multiple users on a Local Area Network (LAN) to make very high speed connections to a Wide Area Network (WAN). These connections are typically made through the PacketBlaster to external communications equipment (including CSUs, DSUs, and synchronous and asynchronous modems) to provide access to WAN lines. Direct connections to a host computer or to another PacketBlaster or compatible EiconCard are also supported.

The PacketBlaster features a 10MHz Hitachi 64570 controller and 64KB of on-board RAM. It has two independent Very High-Speed Interface (VHSI) ports, supporting full duplex communications over a V.24, V.35, EIA-530, V.36, RS-449, or X.21 interface at speeds of up to 2 Mbps per port (depending on the type of interface selected).

No interface selection is required beyond connecting the appropriate cable to the PacketBlaster. The intelligent controller on the card detects which interface(s) the cable supports and automatically configures that port accordingly.

# Installing the PacketBlaster

- **1** When installing the PacketBlaster for use by a Local Area Network, install it in the gateway PC.
- **2** Turn off the PC and disconnect the power cable. Remove its cover according to the manufacturer's instructions.
- **3** Verify the I/O address setting on the PacketBlaster. The PacketBlaster is shipped with the I/O address set to 380h. If this setting conflicts with the I/O address of another card installed in the PC, you can change it using the address switches on the PacketBlaster. See "Setting the I/O Address," on page 3 for detailed instructions.
- **4** Install the PacketBlaster in one of the 16-bit expansion slots in your PC. Secure the PacketBlaster to the chassis of your computer using the bracket-retaining screw.
- **5** Reinstall the cover of your PC. Reconnect the power cable.
- **6** Connect the PacketBlaster to your data communications equipment, to a host computer, or to another PacketBlaster or compatible Eicon Technology EiconCard, using the specific cable required for the type of interface you will be using (see "Selecting an Interface," on page 6).
- 7 Start the configuration software provided either with the card or with your networking software. Use this configuration software to set the interrupt request level of the PacketBlaster (see "Setting the Interrupt Request Level," on page 5), and to specify parameters for the specific type of connections you will be making with the PacketBlaster (for more information, consult the manuals supplied with your networking software).
- **8** The PacketBlaster is now ready to establish connections.

## Setting the I/O Address

The PacketBlaster is shipped with a default I/O address setting of 380h. This address can be changed by setting switch SW1 (Figure 1) to any of the 16 standard I/O addresses listed in Table 1. Hold the card as shown to ensure that the switch numbers and on/off positions correspond exactly with the diagram.

You only need to change the default I/O address setting if it conflicts with another card. For further information see "Avoiding I/O Address Conflicts" on the next page.

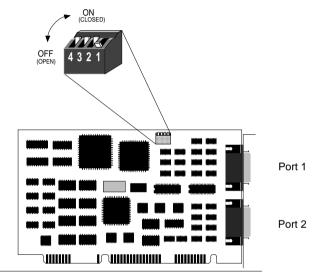



Figure 1. I/O Address Switch

| I/O Address | 1  | 2   | 3   | 4   | I/O Address | 1   | 2   | 3   | 4   |
|-------------|----|-----|-----|-----|-------------|-----|-----|-----|-----|
| 300h        | on | on  | on  | on  | 380h        | off | on  | on  | on  |
| 310h        | on | on  | on  | off | 390h        | off | on  | on  | off |
| 320h        | on | on  | off | on  | 3A0h        | off | on  | off | on  |
| 330h        | on | on  | off | off | 3B0h        | off | on  | off | off |
| 340h        | on | off | on  | on  | 3C0h        | off | off | on  | on  |
| 350h        | on | off | on  | off | 3D0h        | off | off | on  | off |
| 360h        | on | off | off | on  | 3E0h        | off | off | off | on  |
| 370h        | on | off | off | off | 3F0h        | off | off | off | off |

Table 1. I/O Address Switch Positions

## Avoiding I/O Address Conflicts

Along with the single I/O address that you select using the card's switches (the "base address"), the PacketBlaster also recognizes and responds to 1023 related addresses. These are the I/O addresses whose binary value includes the base address. More specifically, the PacketBlaster will recognize any 16-bit I/O address which contains the precise bit pattern of the base address at bits 4 to 9. For example, the default I/O address (380h) is represented by the following binary number:

| Bit # | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| 380h  | 0  | 0  | 0  | 0  | 0  | 0  | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

The outlined portion shows which bits represent the base address. Any 16-bit I/O address which contains the same combination of bit values in this location will be recognized by the PacketBlaster, regardless of how the other bits are set. Thus when the default address is used, for example, the PacketBlaster would respond to all of the following I/O addresses:

| Bit # |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 380h  | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 38Eh  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 8381h |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| E380h |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| FF8Fh | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |

Although the values of bits 0 to 3 and bits 10 to 15 are ignored for the purpose of address recognition, these bits provide other types of information to the PacketBlaster.

To summarize, the PacketBlaster will recognize the base address selected using the card's switches, plus another 1023 addresses whose 16-bit binary value includes the base address at bits 4 to 9. No other device may use any of these I/O addresses.

## Setting the Interrupt Request Level

The interrupt request level (IRQ) is set with configuration software that was supplied either with the PacketBlaster or with your networking software. Consult the documentation provided with this software for specific instructions.

If more than one device is trying to use the same interrupt request level, you will have problems with one or all of these devices. To correct such problems, set the PacketBlaster to another IRQ.

Commonly used IRQs are shown in Table 2. Note that you may be able to make additional IRQs available by disabling serial port 2 and/or parallel port 2. Consult your PC manual for details.

| Interrupt<br>Request Level | IBM PC AT<br>(286/386/486) |
|----------------------------|----------------------------|
| IRQ2                       | Available                  |
| IRQ3                       | Serial Port 2              |
| IRQ4                       | Serial Port 1              |
| IRQ5                       | Parallel Port 2            |
| IRQ6                       | Diskette Controller        |
| IRQ7                       | Parallel Port 1            |
| IRQ10                      | Available                  |
| IRQ11                      | Available                  |
| IRQ12                      | Available                  |
| IRQ14                      | Fixed Disk                 |
| IRQ15                      | Available                  |

Table 2. Interrupt Request Levels for the IBM PC AT

# Selecting an Interface

The PacketBlaster is capable of connecting as a DTE to devices such as Data Service Units (DSUs) which support one of the following interfaces: V.24, V.35, EIA-530, V.36, RS-449, or X.21. It can also connect directly to a host computer or back-to-back to another PacketBlaster or to a compatible EiconCard. The interface is set separately for each of the two VHSI ports.

Table 3 lists the most common connections for each interface, and gives the part number of the required Eicon Technology cable. (For information on making your own cables, see "Cable Construction Information," on page 9.)

| Interface       | Connection                                                                        | Part #  |
|-----------------|-----------------------------------------------------------------------------------|---------|
| V.24            | to V.24 DCE                                                                       | 300-077 |
|                 | to V.24 DTE                                                                       | 300-078 |
| V.35            | to V.35 DCE                                                                       | 300-076 |
|                 | to V.35 DCE (France)                                                              | 300-083 |
| EIA-530         | to EIA-530 DCE                                                                    | 300-080 |
| V.36 and RS-449 | to V.36/RS-449 DCE                                                                | 300-079 |
| X.21            | to X.21 DCE                                                                       | 300-081 |
| Direct          | to VHSI port on another PacketBlaster or<br>compatible Eicon Technology EiconCard | 300-075 |

#### Table 3. Standard Interface Cables

No additional interface selection is necessary after connecting the appropriate cable to one of the VHSI ports. The PacketBlaster recognizes which cable is installed and automatically configures the corresponding interface for that port.

(This applies to cables specifically designed to work with the VHSI port. If you use a third-party cable which the card cannot recognize, you must select the interface type using your configuration software.)

Additional software-based configuration may be required before establishing an active connection. Consult the manuals provided with your networking software for further information. The positions of port 1 and port 2 are shown in Figure 1 on page 3.

## **Connection Status Indicators**

A green LED adjacent to each port on the PacketBlaster provides a convenient indication of the status of the connection on that port. The state of the LED—off, flashing, or on—indicates the status as follows:

| LED State                                   | Connection Status                                                                                                                                                                                                               | Remedy                                                                                                                                                                     |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Off                                         | The port is not loaded (the configuration<br>file describing protocol and interface<br>parameters has not been read by the<br>device driver on the PC).                                                                         | Consult your networking<br>software for instructions on<br>how to load a configuration<br>file and how to start a<br>connection.                                           |
| Rapid Flash<br>(stays on for<br>1/2 second) | The connection has not been established.<br>Either the port is loading <b>OR</b> there is no<br>response from the destination device<br><b>OR</b> the PacketBlaster is waiting for a<br>VHSI cable to be connected to the port. | Verify that the cable is<br>properly connected to the port.<br>If the light continues flashing<br>after a few minutes, verify that<br>the destination device is<br>active. |
| Slow Flash<br>(stays on for<br>1 second)    | The connection was interrupted<br>unexpectedly. The cable was unplugged<br>or damaged while a connection was<br>active.                                                                                                         | Reconnect the cable.                                                                                                                                                       |
| On                                          | The port is active and the connection is good.                                                                                                                                                                                  |                                                                                                                                                                            |

Table 4. Explanation of LED States

# Interface Specifications

The standards compliant with each interface supported on the VHSI ports are listed in Table 5. The rest of this section describes the allocation of pins used to implement the electrical and signalling requirements of each interface. A wiring diagram is also provided, to show the correspondence of the interface pinout to the VHSI port.

| Interface       | Standard      | Compatibility                                                         |
|-----------------|---------------|-----------------------------------------------------------------------|
| V.24            | CCITT V.24    | Signalling                                                            |
|                 | CCITT V.28    | Electrical                                                            |
|                 | CCITT X.21bis | Electrical and signalling                                             |
|                 | EIA RS-232-C  | Electrical and signalling                                             |
|                 | ISO 2110      | Connector type for the DCE side of a V.24<br>VHSI Modem Cable         |
| V.35            | CCITT V.28    | Some signals for electrical                                           |
|                 | CCITT V.35    | Some signals for electrical and signalling                            |
|                 | ISO 2593      | Connector type for the DCE side of a V.35<br>VHSI Modem Cable         |
| EIA-530         | RS-422        | Electrical                                                            |
|                 | RS-423        | Electrical                                                            |
|                 | ISO 2110      | Connector type for the DCE side of a EIA-530 VHSI Modem Cable         |
| V.36 and RS-449 | CCITT V.10    | Electrical                                                            |
|                 | CCITT V.11    | Electrical                                                            |
|                 | RS-422        | Electrical                                                            |
|                 | RS-423        | Electrical                                                            |
|                 | ISO 4902      | Connector type for the DCE side of a V.36/<br>RS-449 VHSI Modem Cable |
| X.21            | CCITT X.21    | Signalling                                                            |
|                 | CCITT V.11    | Electrical                                                            |
|                 | CCITT X.27    | Electrical                                                            |
|                 | EIA RS-422-A  | Electrical                                                            |
|                 | ISO 4903      | Connector type for the DCE side of an X.21<br>VHSI Modem Cable        |

Table 5. Interface Compatibility

## Cable Construction Information

If you plan to construct your own VHSI cables, consult the information below in conjunction with the wiring diagrams provided on the following pages.

#### Wire Gauge, Grounding, and Pairing

- Use 28 AWG 7-strand wire with 0.020–0.028" insulation.
- Chassis grounding is by both a drain wire and by the braid; both must be connected to the connector case and shell at each end of the cable (the braid must be connected through its full circumference).
- Wires identified in the diagrams by the same italic letter under the words "Pairing Guide" must be paired (does not apply to the V.24 interface).

## Type of Connectors

The VHSI port accepts a high density 36-pin male cable connector. The types of connector used on the interface-specific end of the cable are as follows:

| Interface   | Connector |  |
|-------------|-----------|--|
| V.35        | Туре М    |  |
| V.24        | DB25      |  |
| V.36/RS-449 | DB37      |  |
| EIA-530     | DB25      |  |
| X.21        | DB15      |  |

Table 6. Connector Types

## Cable Identification Pins

Several pins on the VHSI side of each type of cable are used to identify the cable to the card. These connections are described in the wiring diagram for each interface.

## The V.24 Interface

A pin-out diagram for the V.24 interface is shown in Figure 2. The signal definitions and names are listed in Table 7.

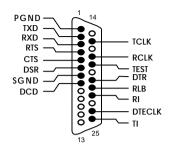



Figure 2. V.24 Interface

| Pin # | Signal | Name                      | Direction | CCITT # |
|-------|--------|---------------------------|-----------|---------|
| 1     | PGND   | Protective Ground         | Common    | 101     |
| 2     | TXD    | Transmit Data             | Output    | 103     |
| 3     | RXD    | Receive Data              | Input     | 104     |
| 4     | RTS    | Request to Send           | Output    | 105     |
| 5     | CTS    | Clear to Send             | Input     | 106     |
| 6     | DSR    | Data Set Ready            | Input     | 107     |
| 7     | SGND   | Signal Ground             | Common    | 102     |
| 8     | DCD    | Data Carrier Detect       | Input     | 109     |
| 15    | TCLK   | Transmit Clock (DCE)      | Input     | 114     |
| 17    | RCLK   | Receive Clock             | Input     | 115     |
| 18    | TEST   | Local Loopback Activation | Output    | 141     |
| 20    | DTR    | Data Terminal Ready       | Output    | 108     |
| 21    | RLB    | Remote Loopback           | Output    | 140     |
| 22    | RI     | Ring Indicator            | Input     | 125     |
| 24    | DTECLK | Transmit Clock (DTE)      | Output    | 113     |
| 25    | TI     | Test Indicator            | Input     | 142     |

Table 7. V.24 Interface Signals

#### VHSI—V.24 Connections

The wiring diagram below shows the connections required to construct a VHSI—V.24 cable. For the additional information required to construct your own cables, consult the section "Cable Construction Information," on page 9.

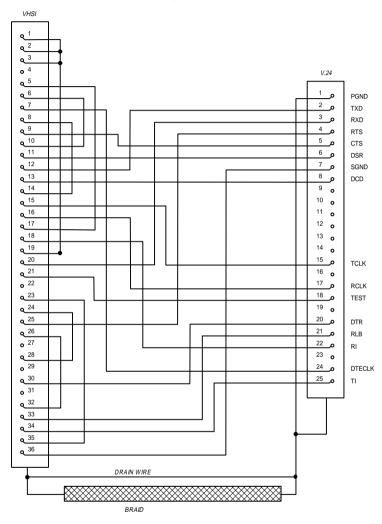



Figure 3. VHSI-V.24 Connections

## The V.35 Interface

\_

A pin-out diagram for the V.35 interface is shown in Figure 4. The signal definitions and names are listed in Table 8.

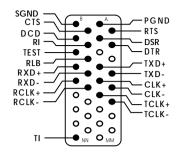



Figure 4. V.35 Interface

| Pin # | Signal | Name                      | Direction | CCITT # |
|-------|--------|---------------------------|-----------|---------|
| А     | PGND   | Protective Ground         | Common    | 101     |
| В     | SGND   | Signal Ground             | Common    | 102     |
| С     | RTS    | Request to Send           | Output    | 105     |
| D     | CTS    | Clear to Send             | Input     | 106     |
| Е     | DSR    | Data Set Ready            | Input     | 107     |
| F     | DCD    | Data Carrier Detect       | Input     | 109     |
| Н     | DTR    | Data Terminal Ready       | Output    | 108     |
| J     | RI     | Ring Indicator            | Input     | 125     |
| L     | TEST   | Local Loopback Activation | Output    | 141     |
| Ν     | RLB    | Remote Loopback           | Output    | 140     |
| Р     | TXD+   | Transmit Data             | Output    | 103A    |
| R     | RXD+   | Receive Data              | Input     | 104A    |
| S     | TXD-   | Transmit Data             | Output    | 103B    |
| Т     | RXD-   | Receive Data              | Input     | 104B    |
| U     | CLK+   | Transmit Clock (DTE)      | Output    | 113A    |
| V     | RCLK+  | Receive Clock (DCE)       | Input     | 115A    |
| W     | CLK-   | Transmit Clock (DTE)      | Output    | 113B    |
| Х     | RCLK-  | Receive Clock (DCE)       | Input     | 115B    |
| Y     | TCLK+  | Transmit Clock (DCE)      | Input     | 114A    |
| AA    | TCLK-  | Transmit Clock (DCE)      | Output    | 114B    |
| NN    | TI     | Test Indicator            | Input     | 142     |

Table 8. V.35 Interface Signals

#### VHSI-V.35 Connections

The wiring diagram below shows the connections required to construct a VHSI—V.35 cable. For the additional information required to construct your own cables, consult the section "Cable Construction Information," on page 9.

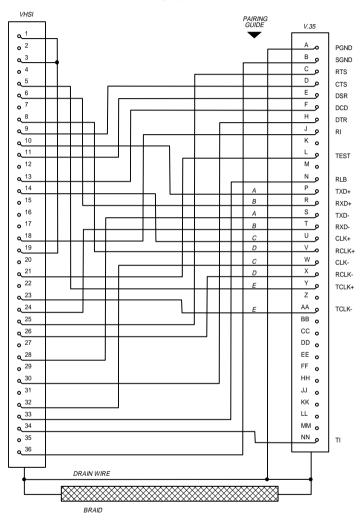



Figure 5. VHSI-V.35 Connections

## The EIA-530 Interface

A pin-out diagram for the EIA-530 interface is shown in Figure 6. The signal definitions and names are listed in Table 9.

\_

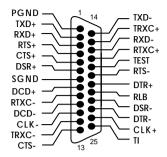



Figure 6. EIA-530 Interface

| Pin # | Signal | Name                 | Direction | CCITT # | EIA # |
|-------|--------|----------------------|-----------|---------|-------|
| 1     | PGND   | Protective Ground    | Common    | 101     | -     |
| 2     | TXD+   | Transmit Data        | Output    | 103A    | BA(A) |
| 3     | RXD+   | Receive Data         | Input     | 104A    | BB(A) |
| 4     | RTS+   | Request to Send      | Output    | 105A    | CA(A) |
| 5     | CTS+   | Clear to Send        | Input     | 106A    | CB(A) |
| 6     | DSR+   | Data Set Ready       | Input     | 107A    | CC(A) |
| 7     | SGND   | Signal Ground        | Common    | 102B    | AB    |
| 8     | DCD+   | Data Carrier Detect  | Input     | 109A    | CF(A) |
| 9     | RTXC-  | Receive Clock (DCE)  | Input     | 115B    | DD(B) |
| 10    | DCD-   | Data Carrier Detect  | Input     | 109B    | CF(B) |
| 11    | CLK-   | Transmit Clock (DTE) | Output    | 113B    | DA(B) |
| 12    | TRXC-  | Transmit Clock (DCE) | Output    | 114B    | DB(B) |
| 13    | CTS-   | Clear to Send        | Output    | 106B    | CB(B) |
| 14    | TXD-   | Transmit Data        | Output    | 103B    | BA(B) |
| 15    | TRXC+  | Transmit Clock (DCE) | Input     | 114A    | DB(A) |
| 16    | RXD-   | Receive Data         | Input     | 104B    | BB(B) |
| 17    | RTXC+  | Receive Clock (DCE)  | Input     | 115A    | DD(A) |
| 18    | TEST   | Local Loopback       | Output    | 141A    | LL    |
| 19    | RTS-   | Request to Send      | Output    | 105B    | CA(B) |
| 20    | DTR+   | Data Terminal Ready  | Output    | 108A    | CD(A) |
| 21    | RLB    | Remote Loopback      | Output    | 140A    | RL    |
| 22    | DSR-   | Data Set Ready       | Input     | 107B    | CC(B) |
| 23    | DTR-   | Data Terminal Ready  | Output    | 108B    | CD(B) |
| 24    | CLK+   | Transmit Clock (DTE) | Output    | 113A    | DA(A) |
| 25    | TI     | Test Indicator       | Input     | 142A    | TM    |

Table 9. EIA-530 Interface Signals

#### VHSI—EIA-530 Connections

The wiring diagram below shows the connections required to construct a VHSI—EIA-530 cable. For the additional information required to construct your own cables, consult the section "Cable Construction Information," on page 9.

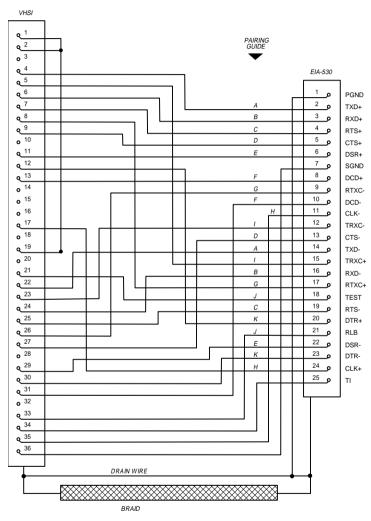



Figure 7. VHSI-EIA-530 Connections

## The V.36 and RS-449 Interfaces

A pin-out diagram for the V.36 and RS-449 interfaces is shown in Figure 8. The signal definitions and names are listed in Table 10.

\_

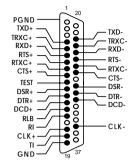



Figure 8. V.36 and RS-449 Interfaces

| Pin # | Signal | Name                      | Direction | CCITT #      |
|-------|--------|---------------------------|-----------|--------------|
| Case  | PGND   | Protective Ground         | Common    | 101          |
| 4     | TXD+   | Transmit Data             | Output    | 103A         |
| 5     | TRXC+  | Transmit Clock (DCE)      | Input     | 114A         |
| 6     | RXD+   | Receive Data              | Input     | 104A         |
| 7     | RTS+   | Request to Send           | Output    | 105A         |
| 8     | RTXC+  | Receive Clock (DCE)       | Input     | 115A         |
| 9     | CTS+   | Clear to Send             | Input     | 106A         |
| 10    | TEST   | Local Loopback Activation | Output    | 141A         |
| 11    | DSR+   | Data Set Ready            | Input     | 107A         |
| 12    | DTR+   | Data Terminal Ready       | Output    | 108A         |
| 13    | DCD+   | Data Carrier Detect       | Input     | 109A         |
| 14    | RLB    | Remote Loopback           | Output    | 140A         |
| 15    | RI     | Ring Indicator            | Input     | 125A         |
| 17    | CLK+   | Transmit Clock (DTE)      | Output    | 113A         |
| 18    | TI     | Test Indicator            | Input     | 142A         |
| 19    | GND    | DTE Common Return         | Common    | 102A/B       |
| 22    | TXD-   | Transmit Data             | Output    | 103B         |
| 23    | TRXC-  | Transmit Clock (DCE)      | Output    | 114 <b>B</b> |
| 24    | RXD-   | Receive Data              | Input     | 104B         |
| 25    | RTS-   | Request to Send           | Output    | 105B         |
| 26    | RTXC-  | Receive Clock (DCE)       | Input     | 115B         |
| 27    | CTS-   | Clear to Send             | Output    | 106B         |
| 29    | DSR-   | Data Set Ready            | Input     | 107B         |
| 30    | DTR-   | Data Terminal Ready       | Output    | 108B         |
| 31    | DCD-   | Data Carrier Detect       | Input     | 109B         |
| 35    | CLK-   | Transmit Clock (DTE)      | Output    | 113B         |

Table 10. V.36 and RS-449 Interface Signals

#### VHSI—V.36/RS-449 Connections

The wiring diagram below shows the connections required to construct a VHSI—V.36/RS-449 cable. For the additional information required to construct your own cables, consult the section "Cable Construction Information," on page 9.

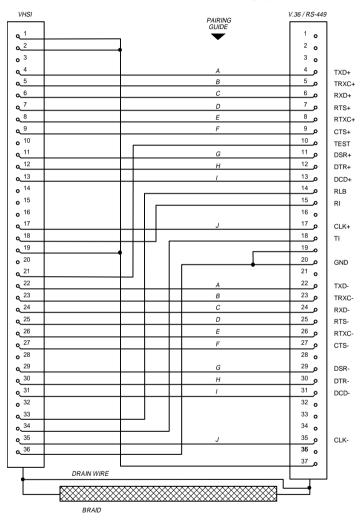



Figure 9. VHSI-V.36/RS-449 Connections

## The X.21 Interface

A pin-out diagram for the X.21 interface is shown in Figure 10. The signal definitions and names are listed in Table 11.

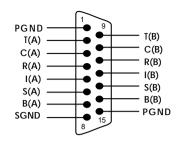



Figure 10. X.21 Interface

| Pin # | Signal | Name                      | Direction | CCITT # |
|-------|--------|---------------------------|-----------|---------|
| 1/15  | PGND   | Protective Ground         | Common    | 101     |
| 2     | T(A)   | Transmit Data (+)         | Output    | 103A    |
| 3     | C(A)   | Control Signal (+)        | Output    | 105A    |
| 4     | R(A)   | Receive Data (+)          | Input     | 104A    |
| 5     | I(A)   | Indication (+)            | Input     | 109A    |
| 6     | S(A)   | Signal Element Timing (+) | Input     | 115A    |
| 7     | B(A)   | Byte Timing (+)           | Input     | 114A    |
| 8     | SGND   | Signal Ground             | Common    | 102     |
| 9     | T(B)   | Transmit Data (-)         | Output    | 103B    |
| 10    | C(B)   | Control Signal (-)        | Output    | 105B    |
| 11    | R(B)   | Receive Data (-)          | Input     | 104B    |
| 12    | I(B)   | Indication (-)            | Input     | 109B    |
| 13    | S(B)   | Signal Element Timing (-) | Input     | 115B    |
| 14    | B(B)   | Byte Timing (-)           | Input     | 114B    |

Table 11. X.21 Interface Signals

#### VHSI—X.21 Connections

The wiring diagram below shows the connections required to construct a VHSI—X.21 cable. For the additional information required to construct your own cables, consult the section "Cable Construction Information," on page 9.

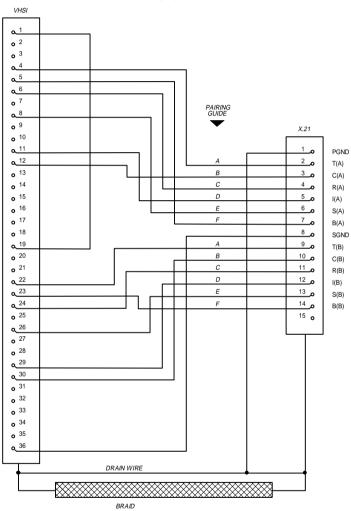



Figure 11. VHSI—X.21 Connections

## Back-to-Back Connections

The wiring diagram below shows the connections required to construct a back-to-back VHSI—VHSI cable. Back-to-back operations are conducted through the V.36 interface. For the additional information required to construct your own cables, consult the section "Cable Construction Information," on page 9.

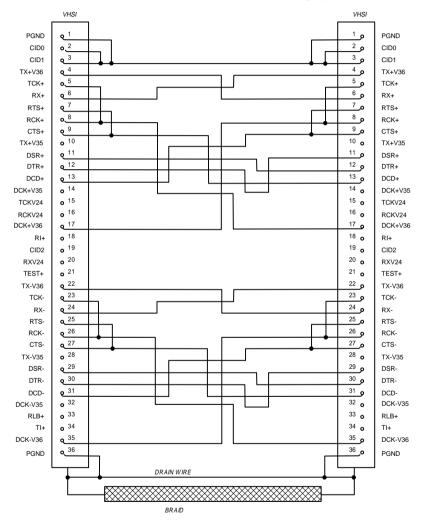



Figure 12. VHSI—VHSI Connections

# **Technical Specifications**

## Base PacketBlaster

#### Technical Data

- ISA bus compatible (16-bit slot)
- Hitachi 64570 HDLC controller at 10 MHz
- 64 KB of static RAM

#### Hardware Installation

- Interrupt request levels selectable via software (2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 15)
- I/O address selectable via on-board switch (16 options)

#### External Interface

• Two 36-pin female ports

#### Performance

• 2 Mbps full duplex per physical port

#### Power Requirements

- 1.5A @ +5V
- 155 mA @ +12V
- 45 mA @ -12V

#### Environmental Requirements

- Operating temperature: 0°C to 50°C
- Operating humidity: 0 to 90% (non-condensing)
- · Barometric operating pressure: 86 to 106 kPascals
- Maximum tolerance in power supply variation: +5% to -5%

## VHSI Ports

#### Technical Data

- Two VHSI ports connect to 36-pin high-density male connectors
- Support for V.24, V.35, EIA-530, V.36, RS-449, and X.21bis (EIA RS-232-C)
- X.21 with V.11 (X.27) signalling
- Internal or external clocking (DTE or DCE) or split (transmit internal, receive external)

# International Regulatory Information

# Regulatory Information for the U.S.A.: FCC Warning

**WARNING** Changes or modifications to this unit not expressly approved by Eicon Technology Corporation could void the user's authority to operate the equipment.

**NOTE** This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.
- This unit requires shielded cables to comply with the FCC Class B emissions limits. Use of unshielded interface cables is prohibited.

## Regulatory Information for Canada: Canadian Emissions Requirements

This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la classe A prescrites dans le Règlement sur le brouillage radioélectrique édicté par le ministère des Communications du Canada.

# Limited Warranty

Eicon Technology Corporation warrants to the original purchaser of this Eicon Technology Product that it is to be in good working order for a period of five (5) years from the date of purchase from Eicon Technology or an authorized Eicon Technology dealer. Should this Product, in Eicon Technology's opinion, fail to be in good working order at any time during this five year warranty period, Eicon Technology will, at its option, repair or replace this Product at no additional charge except as set forth below. Repair parts and replacement Products will be furnished on an exchange basis and will be either reconditioned or new. All replaced parts and Products become property of Eicon Technology. This Limited Warranty does not include service to repair damage to the Product resulting from accident, disaster, misuse, abuse, or non-authorized alterations, modifications, and/or repairs.

Products requiring Limited Warranty service during the warranty period should be delivered to Eicon Technology with proof of purchase. If the delivery is by mail, you agree to insure the Product or assume the risk of loss or damage in transit. You also agree to prepay shipping charges to Eicon Technology and to use the original shipping container or equivalent.

EICON TECHNOLOGY HEREBY DISCLAIMS ALL OTHER EXPRESSED AND IMPLIED WARRANTIES FOR THIS PRODUCT INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow the exclusion of implied warranties, so the above limitations may not apply to you.

IN NO EVENT WILL EICON TECHNOLOGY BE LIABLE IN ANY WAY TO THE USER FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF, OR INABILITY TO USE, SUCH PRODUCT. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages for consumer products, so the above limitations or exclusions may not apply to you.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH MAY VARY FROM ONE JURISDICTION TO ANOTHER.

This Limited Warranty applies to hardware products only.

## Product Comment Form

PacketBlaster Installation Guide 203-046-01

We value your comments. Please use the tables below to rate this product.

| Name    |  |
|---------|--|
| Title   |  |
| Company |  |
| Address |  |
|         |  |

## PacketBlaster

| Packaging     | Poor      | 1 2 3 4 5 6 7 8 9 10 Excel      | lent |
|---------------|-----------|---------------------------------|------|
| Configuration | Difficult | 1 2 3 4 5 6 7 8 9 0 <i>Easy</i> |      |
| Performance   | Poor      | 1 2 3 4 5 6 7 8 9 10 Excel      | lent |
| Workmanship   | Poor      | 1 2 3 4 5 6 7 8 9 10 Excel      | lent |

## Installation Guide

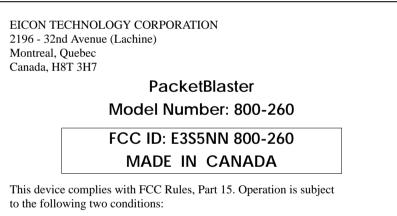
| Accuracy     | Low       | 1 2 3 4 5 6 7 8 9 10 High      |  |
|--------------|-----------|--------------------------------|--|
| Organization | Confusing | 1 2 3 4 5 6 7 8 9 10 Clear     |  |
| Readability  | Difficult | 1 2 3 4 5 6 7 8 9 10 Easy      |  |
| Presentation | Poor      | 1 2 3 4 5 6 7 8 9 10 Excellent |  |

Please mail or fax this form to: **Eico** 

**Eicon Technology Corporation** Attention: Technical Publications 2196 - 32nd Avenue (Lachine) Montreal, Quebec, Canada H8T 3H7

Fax: (514) 631-3092 Tel: (514) 631-2592

## First Edition (February 1995)


PacketBlaster WAN Adapter and EiconCard are trademarks of Eicon Technology Corporation.

IBM, IBM Personal Computer, PC AT, PC XT, Personal System/2, and PS/2, are registered trademarks of International Business Machines Corporation.

Changes are periodically made to the information herein; these changes will be incorporated into new editions of the publication. Eicon Technology may make improvements and/or changes in the products and/or programs described in this publication at any time.

A Product Comment Form is provided at the back of this publication. If the form has been removed, address your comments to: Eicon Technology Corporation, Attn: Technical Publications, 2196 - 32nd Avenue (Lachine), Montreal, Quebec, Canada H8T 3H7. Eicon Technology may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligations to you.

Copyright©1995 Eicon Technology Corporation. All rights reserved, including those to reproduce this publication or parts thereof in any form without permission in writing from Eicon Technology Corporation.



- 1) This device may not cause harmful interference, and
- 2) This device must accept any interference that may be received, including interference that may cause undesired operation.

# Table of Contents

| Introduction                                                   | 1      |
|----------------------------------------------------------------|--------|
| Installing the PacketBlaster                                   | 2      |
| Setting the I/O Address<br>Setting the Interrupt Request Level | 3<br>5 |
| Selecting an Interface                                         | 6      |
| Connection Status Indicators                                   |        |
| Interface Specifications                                       | 8      |
| Cable Construction Information                                 |        |
| The V.24 Interface                                             | 10     |
| The V.35 Interface                                             | 12     |
| The EIA-530 Interface                                          | 14     |
| The V.36 and RS-449 Interfaces                                 | 16     |
| The X.21 Interface                                             | 18     |
| Back-to-Back Connections                                       | 20     |
| Technical Specifications                                       | . 21   |
| International Regulatory Information                           | . 22   |
| Limited Warranty                                               | 23     |

© Copyright 1996 Eicon Technology Corporation. All rights reserved, including those to reproduce this information or parts thereof in any form without permission in writing from Eicon Technology Corporation.